Extensions of α-polynomial classes
نویسندگان
چکیده
Let α(G) be the stability number of a graph G. A class of graphs P is called α-polynomial if there exists a polynomial-time algorithm to determine α(G) for G ∈ P. For every hereditary α-polynomial class P we construct a hereditary extension of P which is either an α-polynomial class or α can be approximated in polynomial time in the extended class.
منابع مشابه
Nilpotent Elements in Skew Polynomial Rings
Letbe a ring with an endomorphism and an -derivationAntoine studied the structure of the set of nilpotent elements in Armendariz rings and introduced nil-Armendariz rings. In this paper we introduce and investigate the notion of nil--compatible rings. The class of nil--compatible rings are extended through various ring extensions and many classes of nil--compatible rings are constructed. We al...
متن کاملThe best uniform polynomial approximation of two classes of rational functions
In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.
متن کاملAlgebraic Properties of Chromatic Roots
A chromatic root is a root of the chromatic polynomial of a graph. Any chromatic root is an algebraic integer. Much is known about the location of chromatic roots in the real and complex numbers, but rather less about their properties as algebraic numbers. This question was the subject of a seminar at the Isaac Newton Institute in late 2008. The purpose of this paper is to report on the seminar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Australasian J. Combinatorics
دوره 26 شماره
صفحات -
تاریخ انتشار 2002